Encrypted DNP3 Traffic Classification Using Supervised Machine Learning Algorithms

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Realtime Encrypted Traffic Identification using Machine Learning

Accurate network traffic identification plays important roles in many areas such as traffic engineering, QoS and intrusion detection etc. The emergence of many new encrypted applications which use dynamic port numbers and masquerading techniques causes the most challenging problem in network traffic identification field. One of the challenging issues for existing traffic identification methods ...

متن کامل

Semi-supervised Encrypted Traffic Classification Using Composite Features Set

Many network management tasks such as managing bandwidth budget and ensuring quality of service objectives rely on accurate classification of network traffic. But the statistical features of encrypted traffics are not stable and do not contain sufficient information for classification all the time. Some applications support multiple protocols, and the behaviors of these applications are complic...

متن کامل

Detecting Encrypted Traffic: A Machine Learning Approach

Detecting encrypted traffic is increasingly important for deep packet inspection (DPI) to improve the performance of intrusion detection systems. We propose a machine learning approach with several randomness tests to achieve high accuracy detection of encrypted traffic while requiring low overhead incurred by the detection procedure. To demonstrate how effective the proposed approach is, the p...

متن کامل

Machine Learning Classification over Encrypted Data

Machine learning classification is used for numerous tasks nowadays, such as medical or genomics predictions, spam detection, face recognition, and financial predictions. Due to privacy concerns, in some of these applications, it is important that the data and the classifier remain confidential. In this work, we construct three major classification protocols that satisfy this privacy constraint...

متن کامل

Comparison of Machine Learning Algorithms for Broad Leaf Species Classification Using UAV-RGB Images

Abstract: Knowing the tree species combination of forests provides valuable information for studying the forest’s economic value, fire risk assessment, biodiversity monitoring, and wildlife habitat improvement. Fieldwork is often time-consuming and labor-required, free satellite data are available in coarse resolution and the use of manned aircraft is relatively costly. Recently, unmanned aeria...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning and Knowledge Extraction

سال: 2019

ISSN: 2504-4990

DOI: 10.3390/make1010022